
mIRC v3.92

Welcome to mIRC v3.92, an Internet Relay Chat Client.

Overview
Installation

The FAQ, Homepage, and other Information

Please read through these sections before asking questions!

Menu Descriptions:
File
Tools
DCC
Windows
Help

Other features
Basic IRC commands

The Author        - Contact Information
The License    - Read this NOW
Future Work    - Where we go from here...

Acknowledgements

Overview

mIRC attempts to provide a user-friendly interface for use with the Internet Relay Chat
network. This version is currently under development and has not been fully tested. ie. it
contains bugs. Use at your own risk. Read the Disclaimer.

mIRC has the following features:

 Coloured text to ease reading.
 Uncluttered display.
 Comprehensive Alias definitions.
 Configurable multi-level popup menus.
 DCC Send/Get/Chat/Resume.
 Finger client.
 Remote CTCP tool.
 Simple Event handler.
 Some basic fonts.
 Ident server.
 Simple Fileserver.
 URL Catcher.
 Command history.
 Function Key definitions.
 Toolbar with tooltips.
 Finger Server
 A handful of options.
 Many other useful bits and pieces.

The various parts of this client have been designed with the aim of simplifying and
speeding an IRC session.

File Menu

The setup information as well as the main options can be accessed through this menu.

Connect

Setup
Options

Exit

Options

The Options dialog is where most mIRC settings can be changed...

 IRC Switches
 Action Lists
 Event Beeps
 Logging
 Double-click
 URL Catcher
 Sound Requests
 Ident Server
 Finger Server
 Extras

DCC Menu

mIRC supports DCC (Direct Client To Client) Send, Get, and Chat which allows it to make a
direct connection to another client, bypassing the IRC network. mIRC also has a DCC
Resume capability which allows you to resume a file transfer in the event that it was
interrupted.

DCC Send
DCC Get
DCC Resume
DCC Chat
DCC Options

On a related note, check out the File Server.

NOTE:
DCC Send and DCC Chat need to use your local host IP address to initiate a connection with
another client. If you are having trouble initiating a connection then your IP address might
be wrong. See the local host and IP address explanations in the Setup Dialog for more
information.

Windows Menu

The Tile, Cascade, and Arrange Icons menu items work the same way they usually do in
windows.

Beneath these, a list of the windows which are currently open is shown.

Help Menu

Contents

Where you are.

About

Where I am.

Miscellaneous stuff

Text Wrap
Text wraps according to the width of the window in which it is printed. If you later enlarge a
window that was small, the text already there is not reformatted to the width of the
window. Only the new text will wrap to the new width. mIRC tries to wrap lines at whole
word boundaries and looks for characters such as fullstops, commas, question marks, etc.
at which to wrap a word to the next line. If it can't find any of these, and the word at the
end of a line is too long, it doesn't move the whole word to the next line but splits it into
two.

Saving options
mIRC saves the main window position and all other settings when you exit the program.
Note that the sizes (and not positions) of the finger, dcc get/chat/send, channel list, etc.
windows are saved. The next time one of these windows opens up, it will be the same size
as the last time you used it.

Multiple Instances
You can only run multiple instances with the 32-bit mIRC. With the 16-bit mIRC, you cannot
run multiple instances from the same EXE. However, you can have two copies of mirc, one
mirc.exe and the other mirc2.exe, and you will then be able to connect to two different
servers at the same time.

The Bouncing Dot
Where oh where can it be? :)

Other things I can't remember...!

The Author (and part-time Human Bean)

Greetings!

I am Khaled Mardam-Bey, residing at 68 Melbury Court, London W8-6NJ, United Kingdom.
I can be reached via email at khaled@mardam.demon.co.uk. You can also see my weird and
wonderful homepage at http://www.wmin.ac.uk/~xhlec.

Please note that I can't guarantee that I'll be able to reply to emails, implement
new ideas, or even fix bugs. mIRC was created for my own personal use and it now does
much more than what I want it to do, so I'm quite happy with it. Nonetheless, I will try to
release new updated versions periodically.

As a home user, you are under no obligation whatsoever to pay for this program.

However, kind contributions of all shapes and sizes are gladly accepted at the above
address. If you like mIRC and want to make a contribution, you can mail me a personal
check for however much you think it's worth, or if that's too much then however much you
can afford, and if you can't afford it then don't worry about it...

I hope you enjoy using mIRC as much as I enjoyed creating it! :)

The License (and disclaimer!)

mIRC v3.92 Internet Relay Chat Client
Copyright © Khaled Mardam-Bey 1995,1996.
All rights reserved.

The mIRC executables, help file and related text files may be distributed together freely in
an unmodified form and may be used without fee by any individual for non-commercial use,
subject to the following terms:

mIRC may not be sold or resold, distributed as a part of any commercial package, used in
support of a commercial service, or used in any kind of profit-generating activity even if it is
being distributed freely.

The integrity of the original mIRC zip file as distributed by me is essential. None of it's
contents may be modified or removed or added to in any way.

You may use mIRC freely if:

1. You are a member of a non-commercial educational institution.
2. You are a home user.
3. You are a member of a non-profit organisation, excluding government agencies.

mIRC v3.92 is provided "AS IS" without warranty of any kind, either express or implied,
including but not limited to the implied warranties of merchantability and fitness for a
particular purpose. In no event shall Khaled Mardam-Bey be liable for any damages
whatsoever including direct, indirect, incidental, consequential, loss of business profits or
special damages, even if Khaled Mardam-Bey has been advised of the possibility of such
damages.

Double-click

Double-Click in...

You can enter a set of commands that will be executed whenever you double-click in the
specified window.

For example, for the channel nickname listbox you could use:

/query $1 I have been searching for thee wit (sic) me perishing scopes...

as the entry which means that when you double-click on a nickname the query window
opens up and the user receives the above message.

Aliases

mIRC allows you to define simple aliases to speed up your IRC session. The current
implementation allows fairly unsophisticated compound terms to be stored. Each unique
alias must be entered on a single line. See the following examples to understand how they
work. To use these aliases you must know some IRC commands.

Alias Examples

/gb /join #gb

Typing "/gb" is now the same as typing "/join #gb".

/j /join $1

We have now added a parameter string. If we type "/j #gb", then that's the same as typing
"/join #gb". The $1 refers to the first parameter in the line that you supply.

/yell /me $2 $1

if you now type, "/yell There! Hello"      the action command will be    "/me Hello There!"    The
number after $ specifies the number of the parameter in the string that you entered.

/jj /join $?

the question mark indicates that the client should ask you for that parameter. The
parameter you supply will be inserted in the line at that point. So if you type "/jj", a dialog
pops up asking you for the channel you want to join. If you enter "#gb", then the final
command will be, "/join #gb".

/jj /join #$1

the # sign indicates that the parameter you specify should be prefixed with a hash
indicating that it is a channel.

/jj /join $?="Enter channel to join:"

This does the same thing but now the dialog will have the "Enter channel to join:" line
displayed inside it.

/aw /away $?="Enter away message:" | /say $!

This is similar to the line above except for the addition of the $! parameter. This refers to
the text you just typed into the parameter box. ie. the away message. This saves you
having to type the same message twice.

/give /me gives $$1 a $$2

The double $$ means that this command will only be executed if the parameter is given. If
you give only one parameter in the above command it will not be executed. You can also do
$$?1 or $?1 which means try to fill this value with parameter one if it exists. If parameter
one doesnt exist, ask for it. In the first case the parameter is necessary for the command to
be executed, in the second case it isn't.

/multiping /ctcp $* ping

The $* means that this command will be executed for ALL parameters individually. So if you
typed "/multiping nick1 nick2 nick3 nick4" then each individual nick will be ping'd.

/slap /me slaps $1 around with *2

The * indicates that everything following (and including) parameter 2 should be appended
to the command line. if you type, "/slap Sheepy a large trout", the final line will be "/me
slaps Sheepy around with a large trout".

If you had defined the alias as "/slap /me slaps $1 around with $2", then the final command
line would have been "/me slaps Sheepy around with a".

You can also specify *2-5 which means use only parameters 2 to 5.

/laugh /me laughs at $1's joke

Anything appended to a $ parameter is appended to the final parameter. So if in the above
example we type /laugh funnyguy, the final command would be "/me laughs at funnyguy's
joke".

/silly /say Hel $+ lo th $+ ere $+ !

Parameters are normally seperated by a space. To prevent mIRC from inserting a space
before appending the next parameter you can use $+. The above line will send "Hello
there!".

/p /part #

The # sign refers to the channel you are currently on. So if you are on channel #blah, and
you type "/p", then the client replaces the # sign with #blah, and the final command is
"/part #blah".

/op /mode # +o $1

To op someone you can now just type    "/op goat" instead of the whole /mode command.

/dop /mode # -ooo $1 $2 $3

You can now deop three users by typing    "/dop goat mike bongo"

For multiple commands we use a "|" (the shifted character usually under the \ key). So to
write an alias that kicks and bans someone:

/dkb /kick # $1 | /mode # +b $1

Other identifiers:

$day $time $date - your current day, time, and date.
$adate - same as $date except US style month/day/year.
$fulldate - Tue Dec 26 15:04:00 1995
$me - refers to your nickname.
$cb    - refers to the first 256 characters of the current clipboard contents.

$server - The server to which you are currently connected.
$ip - your IP address.
$host - your Local host name.
$url - the currently active URL in your WWW Browser.

The $snicks identifier
This returns a string of the currently selected nicks in the active channel listbox in the form:
nick1,nick2,nick3 so it can only be used with irc commands that take multiple parameters
in this form.

The $r(v1,v2) identifier
This works in two ways. If you supply it with numbers for v1 and v2, it will return a random
number between v1 and v2. If you supply it with letters, it will return a random letter
between letters v1 and v2.

$r(a,z)        will return a letter in the range a,b,c,...,z
$r(A,Z)      will return a letter in the range A,B,C,...,Z
$r(0,N)      will return a number in the range 0,1,2,...,N

The $read identifier
This picks a line from a file and inserts it at the current position. The format is:

$read [-l# -stext] <filename.txt>

For example:

/say $read c:\funny.txt

Will pick a random line from funny.txt and insert it at that position in the command.

/say $read -l24 c:\funny.txt

Will pick line 24 from funny.txt and insert it at that position in the command.

/kick # $1 $read kicks.txt

Will pick a random kick line from kicks.txt and use it in the kick command.

You can also use $read in remote definitions. For example:

1:TEST:/notice $nick I said " $+ $read witty.txt $+ "

The first line in the file must be a single number specifying the number of lines in the file.
$read will insert any text, even commands with identifiers, and these will work like normal
commands.

/say $read -smirc info.txt

Will scan the file info.txt for a line beginning with "mirc" and will use the rest of the line in
the alias.

The $file and $dir identifiers
This allows you to select a filename which is then inserted into that position in an alias. The
$dir identifier pops up a full directory and file dialog, while the $file just pops up a quick
file dialog.

$file[="Select a file"] <path and filename>
$dir[="Select a file"] <path and filename>

For example, in a popup definition:

Play A Wave:/wavplay $file="Choose a wave!" c:\mywaves*.wav

NOTE: You should not use $file or $dir with the /dcc send command which has it's own
built-in dcc send dialog.

Function Key support

You can redefine function keys to perform certain commands, just like aliases. For example:
/F1 /say Hello!
/sF2 /query $1
/cF3 /ctcp $1 version

The 's' and 'c' stand for Shift key and Control key respectively.

Note that a function key will behave differently depending on the window in which it is
used. For example, when using it in a query window the $1 parameter refers to the
selected users nickname. If you're on a channel and the nickname listbox is active then
the function key will work on the selected nicknames. If the listbox is not active, the
function key will just work on the channel.

Notes:
1. If you create an alias that has the same name as an existing IRC command, the alias
takes priority over the command (but does not replace it). So if you define an alias as
"/join /join #gb", this will work fine.

2. An alias cannot call itself or another alias.

3. Aliases can be called from popups, remote, or any other definitions, so be aware of the
aliases you've written in case they replace standard commands!

Popups

mIRC allows you to create three different types of popup menu: one for the main window,
one for query/chat windows, and one for the listbox where users nicknames on the current
channel are listed. To use these you must know some Basic IRC commands.

If you press the right mouse-button, the popup menu will appear and you can select menu-
items which you have defined to perform certain tasks, such as Opping a user or joining a
channel. In fact, each menu-item is associated with a set of aliases, just like the alias
window. Note that the popup menu-item can call the commands defined in the alias
window.

You can create as many levels of popup menus as you want. ie. menus within menus.

To understand how popup menus can be defined, see the following examples.

On a single line, enter:

Get Help:/join #irchelp

The words before the ":" (colon) are the name of the menu-item. The words after the ":" are
the commands that are to be performed. In this case, the menu-item you would see when
you click the right mouse-button in the main channel window is "Get Help". The command
that would be performed would be "/join #irchelp", as if you had typed it.

The format of the commands follows precisely the same as those in normal aliases. See the
aliases help section to understand how to write an alias.

To create a Sub-menu, use a "." (a fullstop/period). Thus:

Join a Channel
.Get IRC help!:/join #irchelp
.Visit the folks at #friendly:/join #friendly
.Who shall we join?:/join $?

In this case, the name of the sub-menu is "Join a Channel". All the commands following it
beginning with a "." are part of the submenu that fits under this menu-item.

To create menus within a submenu, you just add more fullstops:

Join a Channel
.Fun Stuff
..Type1 Fun
...Fun1:/join #fun1
...Fun2:/join #fun2
..Type2 Fun
...Fun2:/join #fun2
...Fun3:/join #fun3
.Help
..Get IRC help!:/join #irchelp
..Help1:/join #help1
..Help2:/join #help2
.Other Channels

..Visit the folks at #friendly:/join #friendly

..Wibble Wobble:/join #wibble

.Who shall we join?:/join #$$?="Please enter a channel name:"

And another example:

whois ?:/whois $?
-
Misc
.Edit Temp:/run notepad.exe temp.txt
.say?: /say $?
.action?:/me $?
Names
.#irchelp: /names #irchelp
.#friendly: /names #friendly
.names ?:/names $?
-
channel list:/list
-
Join a Channel
.Get IRC help!:/join #irchelp
.Visit the folks at #friendly:/join #friendly
.Who shall we join?:/join $?

The above menu would probably be suitable for the main channel window.

NOTE: You can seperate menu items by placing a single "-" (minus sign) on a line by itself.

To use the popup menu for the nickname listbox, you need to select a nickname before the
menu will pop up. The following example follows the same design as the one above, except
that it is oriented towards performing commands on a nickname. Here is a typical listbox
popup menu:

Who Is?:/whois $1
-
Modes
.Give Ops:/mode # +o $1
.Deop:/mode # -o $1
.Deop, Kick, Ban:/mode # -o $1 | /kick # $1 | /ban $1
-
DCC Send:/dcc send $1
DCC Chat:/dcc chat $1
-
Slap!:/me slaps $1 around a bit with a large trout
Query:/query $1 Hey you! hello? are you there...?

Activation
To activate/deactivate popup menus, turn the Active option on or off for each one.

The popup menu for the Query/Chat window works more or less the same as the channel
listbox popup menu. The $1 always refers to the nickname of the user you have selected.

Extras

The options in this menu are more or less after-thoughts... thus the highly descriptive title.
Since there are many options that could still be added, they will probably all end up here
until they grow to warrant a seperate dialog box all to themselves.

Multi-line editbox
In single line mode, the text scrolls to the right when you reach the end of the edit box. In
multi-line mode, the text starts again at the left and scrolls downwards. It's probably easier
to use multi-line mode since you can see what you've typed if the line is long. This mode
also allows you to paste several lines of text into the editbox.

NOTE: The status window permanently has a single line edit box.

Windows colours
You can have mIRC use your windows colours, however it will only display monochrome
text. This is because mIRC cannot know which other colours are compatible with the
background window colour you've chosen.

Toolbar and tooltips
You can choose to have the toolbar and it's tooltips hidden or shown.

Small fonts in...
Selecting this option will make mIRC display text in the Aliases, Popups, and Remote
windows using a small font instead of the regular font.

ESCape key minimizes window
To have a window minimize whenever you press the ESCape key select this option.

Line separator
You can specify a line seperator to be used in the status window. You can use a space to
have a blank line. If you leave the box empty, lines in the status window will not be
seperated.

Command Prefix
The default standard prefix to a command is a "/" character, however you can specify
another character if the "/" key is hard to access on your keyboard. Some people use the "."
character to prefix commands. Note that regardless of what character you choose here,
mIRC still recognizes the "/" character and uses it internally.

Scrollback buffer size
This limits the scrollback buffer to the specified number of lines. Note that if a scrollback
buffer already contains more than the specified number of lines it will be shortened. You
can always use the /clear command in a window to clear the scrollback buffer completely. If
you are scrolling back through the buffer, lines will not be removed until you return to the
bottom of the buffer.

Append this text to the application title bar
This allows you to specify text that will be shown in the mIRC application title bar.

Future Work

This is UNSUPPORTED software. I have a life to live!

I can't guarantee that I'll be able to reply to emails, implement new ideas, or
even fix bugs. mIRC was created for my own personal use and it now does much more
than what I want it to do, so I'm quite happy with it. Nonetheless, I will try to release new
updated versions periodically.

mIRC is not meant to be highly-configurable or comprehensive. It's meant to be quick,
simple, and user-friendly, providing the user with the basic functions of an IRC client. I have
gone to a lot of trouble to make things transparent... I hope no one notices.

My interpretation of protocols and commands may not be correct. If it appears that mIRC is
not performing a function in a standard way, which you feel is important, tell me and I'll see
if I can remedy the problem.

Acknowledgements - Thank you, thank you, and thank you...

Writing this client would have been impossible without the availability of documentation,
source code, and help from many people. In an attempt to understand the workings of
winsock and windows routines, source code from many sources was mutilated and
recombined in weird and wonderful ways. Several months and 1000's of lines of code later,
it's difficult to know not only who to thank but also how much. So, in no particular order,
here goes nothing:

Thanks to...

Winsock help files, RFC1459, IRC Faqs, IRC source codes, and a multitude of other
documents, as well as all of the source code for winsock and windows programming in the
Public Domain, I couldn't have done it without you. I must have looked at a million zip files.
Here is a small list of source codes which I found useful in helping me clarify ideas,
understand protocols, and in some cases to become even more confused! These are the
few sources I can remember. I also used several different programs to help me
trace/experiment with winsock calls as well as other sources in Pascal, C, C++, and Basic.
I'm sorry I can't remember all of you, thanks!

Peter R. Tattam, whose WinIRC was the inspiration for this program, specifically it's lack
of an /action command! It's quite possible that had WinIRC had an action command, I would
never have written this client.

Nicolas Pioch, for his short IRC primer, portions of which were used to write the IRC
commands section.

Ramji, who kept on asking for new options to be added to the program... remind me to
stay away from you the next time I code something ;)

Bibbly, whose accute knowledge of RFC's directed me to the one for IRC, saving me from
having to download them all ;)

Stimps, who showed no mercy and uploaded me a slightly large file explaining hows
scripts work...

Tjerk, whose emails, comments, flying fish, and beta-testing have improved mIRC in too
many ways to mention.

Mike, for his user-interface advice, bits of code, and artistic appreciation of my toolbar
buttons ;)

Edward, whose diligence in beta-testing is matched only by his anagramatic wizardry...

James G., who answered question... after question... after question...

Bunster, for providing me with an unlimited supply of delicious life-giving queen-size
futons...

Viv, may a zillion rose petals land gently on thee (and you know who :)

and ofcourse... the Beta-testers and the folks who sent me bug reports and suggestions :)

and special thanks go out to the folks who help out on channel #mIRC on EFnet,
Undernet, and DALnet.

also thanks to all the users who have set up mirror sites for the mIRC homepage and FAQ!

and thanks to the people who sent me contributions :)

and to M.Hunnibell for the ident server suggestion and help, M.Overtoom for the ctl3d
dialog code, Mark "Too Slick" Hanson for debugging the DCC routines, Ron R. for his
firewall code, Emiliano Valente for his mIRC logo design, and...

all the other wonderful, heart-warming, kind folks who directed me at different people,
places, source codes, and documents, discussed ideas with me, and in general both
supported and laughed at my humble efforts. Thanks! :)

IRC II v2.2pre8 and above copyright (c) 1992, 1993, 1994 matthew green.
WSFtp v2.0 Copyright 1994 John A. Junod
Zircon Copyright (c) 1993 Lindsay F. Marshall Jon Harley
Finger 1.0 by Zoran Dukic e-mail: dukic@olimp.irb.hr
SerWeb Copyright 1993 Gustavo Estrella estrella@cass.ma02.bull.com
TinyIRC Nathan Laredo nathan@eas.gatech.edu
Text Server Version 1.0 Copyright 1993 Lee Murach
Winsock Module in Winsock Chess Copyright (C) D. Munro 1994
Finger Version 3.1 Lee Murach Copyright 1992, 1993 Network Research Corporation
wSMTP Server Copyright 1993 Ian C. Blenke
NCSA Telnet J.Mittelhauser (jonm@ncsa.uiuc.edu) C.Wilson (cwilson@ncsa.uiuc.edu)
WinWhois Koichi Nishitani (njknish@mit.edu) Larry kahn (71434,600 kahn@drcoffsite.com)
WSPing John A. Junod    (junodj@css583.gordon.army.mil / zj8549@trotter.usma.edu)

Installation

This package consists of the following files:

 mIRC.exe 16-bit version
 mIRC32.exe 32-bit version
 mIRC.hlp the help file
 readme.txt this intro text file
 versions.txt version history

 mIRC.ini the main ini file
 aliases.ini the aliases ini file
 popups.ini the popups ini file
 remote.ini the remote ini file

 Place all of these files together in a directory.

To use the 32-bit version you will need to have either Win32s installed on your system or
you must be using a 32-bit operating system. Once you have installed mIRC, run it from
windows, fill in the required setup information, and connect to the IRC server.

The mirc.ini file stores general mIRC information, whereas the other .ini files store the
aliases, popups, and remote section information respectively. You should store these
sections seperately from the mirc.ini file. These .ini files come with useful examples and
pre-written aliases and popup menus that will help you understand how to configure these
options.

Please read the versions.txt file from now on to find out what has been changed/fixed in
newer versions.

To use mIRC you will need a Winsock.dll of which several versions exist (both commercial
and shareware) and a connection to the internet. If you don't have either of these, ask
someone about them!

Some Basic IRC Commands

mIRC does not come with a tutorial and assumes that you are already somewhat familiar
with IRC. For those with limited IRC experience, the following list of commands should help
you get started. Note that you can join channel #irchelp to get help if you are confused
about a command. There are also mIRC-specific commands you can look at.

Once you have connected to an IRC server, you can try some of the following commands:

/JOIN #channel
      Join the specified channel.

example:    /join #irchelp

This will join you to the #irchelp channel. Once on a channel, anything you type will be
seen by all the users on this channel. The #irchelp channel is very useful, so say hello and
then ask any questions you want. If the channel you specified doesn't exist, a channel with
that name will be created for you.

/PART #channel
        Leave a channel.

example:    /part #irchelp

/LIST [#string] [-MIN #] [-MAX #]
        Lists currently available channels. You can also tell mIRC to show only channels with a
minimum and a maximum number of people. If you specify a #string then mIRC will only
list channels with that string in their title.

example:    /list
example:    /list -min 5 -max 20
example      /list #love

/ME message
      Tells the current channel or query about what you are doing.

/MSG nickname message
      Send a private message to this user without opening a query window.

/QUERY nickname message
      Open a query window to this user and send them a private message.

/WHOIS nickname
      Shows information about someone.

/NICK nickname
      Changes your nickname to whatever you like.

/QUIT [reason]
      This will disconnect you from IRC and will give the optional message as the reason for
your departure. (this message only appears to people who are on the same channels as
you).

example: /quit That's all folks!

/AWAY [away message]
        Leave a message explaining that you are not currently paying attention to    IRC.
Whenever    someone sends you a MSG or does a WHOIS on you, they automatically see   
whatever    message    you    set.    Using    AWAY    with    no parameters marks you as no
longer being away.

example:    /away off to get something to eat, back in a moment!

/TOPIC #channel newtopic
        Changes the topic for the channel.

example: /topic #friendly Oh what a beautiful day!

/INVITE nickname #channel
          Invites    another    user to a channel.

Channel and User Control
The following commands give you control over both a channel and the users on that
channel (assuming you have Op status). It's probably wise not to abuse either of them.

/KICK #channel nickname
      Kicks    named    user    off a given channel.

example: /kick #gb Ed

/MODE #channel|nickname [[+|-]modechars [parameters]]
      This is a powerful command that gives channel operators control of a channel and the
users on it.

Channel modes

ModeChar Effects on channels
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
b <person> ban somebody, <person> in "nick!user@host" form
i channel is invite-only
l <number> channel is limited, <number> users allowed max
m channel is moderated, (only chanops can talk)
n external /MSGs to channel are not allowed
o <nickname> makes <nickname> a channel operator
p channel is private
s channel is secret
t topic limited, only chanops may change it
k <key> set secret key for a channel

User modes
-------------------

ModeChar Effects on nicknames
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
i makes you invisible to anybody that does

not know the exact spelling of your nickname
o IRC-operator status, can only be set

by IRC-ops with OPER
s receive server notices
v gives a user a voice on a moderated channel

Here a few examples of the MODE command:

To give someone Op status:        /mode #channelname +o nickname

Giving someone Op status means giving them control over the channel and the users on it.
Give this out sparingly and to people you trust.

To op several people:      /mode #channelname +ooo nick1 nick2 nick3

To de-op someone:        /mode #channelname -o nickname

To ban someone:    /mode #channelname +b nickname (or user address)

example: /mode #animals +b Jiminy
example: /mode #tree +b joe@bloggs.edu

To Unban someone:    /mode #channelname -b nickname (or user address)

example: /mode #gb -b Ed

To Make a channel invite only:    /mode #channelname +i

You must now invite a user for them to be able to join your channel.

There many more commands but this list should help you get started.
To learn more about IRC commands you should download an IRC FAQ.

Good luck!

DDE Control

mIRC currently supports a limited DDE capability.

All DDE transactions are synchronous, mIRC waits at most one second for a reply or
acknowledgement to any dde poke or query it makes.

As a server, mIRC's default service name is... mIRC. At this time, mIRC defaults to non-
DDE Server mode at startup, so you can use:

/ddeserver [[on [service name]] | off]

to turn on/off the dde server mode. If you have more than one mIRC acting as a DDE server
then you should specify a different [service name] for each mIRC since if they all have the
same service name you won't be able to predict which dde message will go to which server.
For example:

/ddeserver on mIRCBot

For each of the following DDE topics, an example is given using mIRC's /dde command and
$dde identifier (both are explained after this section) which should help you understand
how they work.

The following DDE topics are supported:

Topic: CHANNELS
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: A single line of text listing the channels which you are currently on seperated by
spaces. eg. "#mirc #mircremote #irchelp"
Example: This should only be called by an application, not from within an mIRC alias.
Description: The line of text that this returns could end up being quite long, maybe several
k's worth of text, so an application should be prepared to handle this.

Topic: COMMAND
Transaction Type: XTYP_POKE
Item: None
Data (Arguments): One line of text containing the command to be performed.
Returns:Nothing
Example: /dde mirc command "" /server irc.demon.co.uk
Description: This is essentially the same as the remote DO ctcp command, it just executes
whatever command you give it.

Topic: CONNECTED
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns:"connected" if you're connected to a server, "connecting" if you're in the process of
connecting to a server, and "not connected" if you're not currently connected to a server.
Example: /say mIRC is currently $dde mirc connected "" to a server
Description: Self-explanatory.

Topic: EXENAME
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: The full path and name of the mIRC EXE file. eg. "c:\mirc\mirc.exe"
Example: /say The mIRC exe path and name is $dde mirc exename ""
Description: This might be useful for applications that need to know the path and name of
the exe file.

Topic: INIFILE
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: The full path and name of the main INI file that is being used. eg. "c:\mirc\mirc.ini"
Example: /say mIRC's main ini file is $dde mirc inifile ""
Description: This might be useful for applications that need to take a look at the INI file for
various bits of information.

Topic: NICKNAME
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: The nickname currently being used.
Example: /say My mIRCbot is using the nickname $dde mirc nickname ""
Description: Self-explanatory.

Topic: SERVER
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: The server to which you were last or are currently connected. eg. "irc.server.co.uk"
Example: /say My mIRCbot's irc server is $dde mirc server ""
Description: Self-explanatory.

Topic: USERS
Transaction Type: XTYP_REQUEST
Item: Channel name, in the form #channel
Data (Arguments): None
Returns: A single line of text listing the users on the specified channel seperated by spaces.
Example: This should definitely only be called by an application, not from within an mIRC
alias.
Description: You can only request the names of users on a channel which mIRC has joined.
This is a dangerous command because the line of text it returns could be very, very long,
so any application that uses this must be prepared to handle a single line of several k's
worth of text.

Topic: VERSION
Transaction Type: XTYP_REQUEST
Item: None
Data (Arguments): None
Returns: mIRC version number eg. "mIRC16 3.92" or "mIRC32 3.92"
Example: /say mIRC's version number is $dde mirc version ""
Description: Self-explanatory.

To use the following /dde command and $dde identifer you must know the DDE

specifications of the application with which you want to communicate.

The /dde command

/dde [-r] <service> <topic> <item> [data]

The command defaults to sending an XTYP_POKE unless you specify the -r switch in which
case an XTYP_REQUEST is sent. If you are sending an XTYP_POKE then all four arguments
are mandatory, if you are sending an XTYP_REQUEST then the first three arguments are
mandatory. This is why you can see a "" in the examples above, it acts as a filler and isn't
actually used for anything. This filler is important because you might have the /dde or $dde
mixed with other commands, and mIRC has to know the exact number of parameters when
parsing.

/dde monolog talk "" Greetings Earthling!

The $dde identifier

$dde <service> <topic> <item>

This sends an XTYP_REQUEST and retrieves any data returned by the specified service. All
three arguments are mandatory (as explained in the above paragraph). Any retrieved data
is inserted in the current position in an alias.

/say My other mIRC is $dde mirc connected "" to $dde mirc server ""

Tools Menu

Some basic tools...

Aliases
Popups
Remote

Finger
Timer

DCC Resume

This allows you to resume DCC transfers that failed to complete.

This will only work with another mIRC client.

If a user tries to send you a file that already exists in your get directory then you will be
shown a DCC Get dialog warning that the file exists. The dialog gives you the option to
either overwrite, resume, or rename the file.

If you select overwrite then the whole file will be downloaded from the beginning and any
existing file of the same name will be erased.

If you select resume then mIRC will attempt to negotiate a transfer resume to get the
remaining part of the file. It will append this to the portion of the file you already have.

The negotiation method is specific to mIRC. It is not standard and will not work with other
DCC implementations (especially since most do not have resume capability). The
negotiation is automatic, and once the receiving user clicks the resume button, the transfer
will commence as normal.

Here is a description of the mIRC DCC Resume Protocol.

Connect

Select this menu item to initiate a connection to IRC. You must have input the required
information in the Setup window. This menu item changes to "Cancel connect" while
attempting to connect to an IRC server, and it changes to "Disconnect" while you are
connected.

Setup

You must enter basic information about yourself in this dialog. mIRC will not connect if any
of the fields are empty.

IRC Servers
You can build up a list of IRC servers that you use regularly by clicking on Add to add a new
server, Edit to edit an existing server, and Delete to delete a server.

For each server you can type in a description, the server address, and a port number
(usually 6667) and for users who need special access to servers a password can be
supplied. Note that a password is only required for special types of users, if you don't know
if you need one then you don't!

The server you last connected to will be placed at the top of the list. Note that you can also
use a servers IP address if you know it. If you double-click on a server then mIRC will try to
connect to it.

If you try to connect to a server and you get "Unable to resolve IRC server name" then the
problem could be that 1) Your Internet Provider's DNS isn't working, or 2) The address
doesn't exist.

Remember that if you try to connect to an IRC server that is geographically far away from
you, it will take longer to connect to it. In fact, some servers might refuse you a connection
if you're too far. So just try a different, closer server until one catches.

Real Name and Email Address
The first entry can be either your real name or a witty one liner which will appear in your
/whois information. You must also enter a full email address eg.
khaled@mardam.demon.co.uk. The username part of the email address is used to register
with the server.

Nickname and Alternate
As well as entering a regular nickname, you can also enter an alternate nickname so that if
the first nickname is in use when you try to log on, the alternate will be tried. If both
nicknames are in use, mIRC inserts "/nick" into the edit box so that all you have to do is
enter a new nickname and press enter. These values cannot be changed while connected
to a server.

Also see Local Information for an explanation of IP addresses and Local Host names.

Ident Server

mIRC can act as an ident server and sends the specified User ID and System as
identification. This server will be more useful to some people than others. In general it is
better to leave it active as some systems might refuse a connection if there is no reply to
an ident request.

User ID can be your account or user name on your system. For most people this will be the
User ID portion of their email address (the text before the @ sign).

System identifies your operating system. For all intents and purposes, replying with a
value other than UNIX would not be very useful for most people.

Port should usually be 113.

This server will reply to ALL ident queries sent to the specified port ie. it is not limited to
replying to an IRC server for mIRC. Note that this server will not work with some internet
setups.

Finger

This fingers a persons address to find out more information about them. If a user has their
own personal address, this will only work if they run a finger server. Most other addresses
eg. school, government, etc. can usually be fingered sucessfully, though they will not
necessarily give you any useful information. For some users this can be a way of checking if
they have mail.

You can also type    /finger <nick/address> at the command line, eg. /finger
xhlec@wmin.ac.uk

If there's a "." in the parameter you provide then it assumed to be an address and is
immediately fingered, otherwise it is assumed to be a nickname, so mIRC does a /whois on
the nickname to find the users address and then fingers that.

On a related note, check out the Finger Server.

Timer

The online timer is displayed in the status window next to your nickname. You can choose
to have the timer reset to zero every time you connect so that you can tell how long you
are on for that session, or If you select the second option, the timer will be cumulative and
will show the total amount of time you have used IRC since the last reset.

Remote

The Remote Tool allows you to specify both how mIRC replies to CTCP queries from other
users and how it reacts to certain kinds of IRC events. This tool is the most complex part of
mIRC and requires that you understand the format of aliases and IRC commands precisely.

With this tool you will be able to let mIRC respond to almost any remote command you can
think of... in fact, any command that you can type can be executed remotely. You can do
things like give your friends Op status or invite them to a channel at their request, you can
give them access to your files, or you can let them control your mIRC in other ways.

You will also be able to set up mIRC to react to events such as users joining channels,
responding to queries with certain words in them, and opping or deopping users
automatically.

The Remote window
Special Identifiers
Access Levels and Commands

The following examples describe, with increasing complexity, how the remote tool can be
configured.

Example 1: How to change replies to standard CTCP queries...
Example 2: How to Op, Invite, and Unban your friends...
Example 3: How to control mIRC remotely...
Example 4: How to offer files for people to DCC...
Example 5: How to listen for events...

Other notes

The Remote window

The remote window consists of

 the Users list where you keep a list of all authorized users and their access levels,
 the Commands list where you keep a list of all commands and their access levels,
 the Events list where you keep a list of events to which mIRC should react,
 the Listen switch which turns the remote on and off, and
 the Default level number which controls the number of commands to which

unlisted users have access.

The Internal Address List option is related to User and Access level maintenance described
below.

mIRC also understands the following commands:

/remote [on | off] - switches commands on and off.

/events [on | off] - switches events on and off.

/dlevel <level> - changes the default user level eg. /dlevel 2

/ulist [< | >]<level> - lists users in the remote list with the specified access levels. For
example:

/ulist <10        lists users with access levels less than or equal to 10
/ulist >5            lists users with access levels larger than or equal to 5
/ulist 4                lists users with access level 4

/enable and /disable are used to make groups of commands active or inactive. See Access
Levels.

Maintaining Users and their Access Levels
You can use the following three commands to add and remove users to the users list, as
well as to add and remove levels from existing users.

/auser [-a] <levels> <nick | address>

This adds the specified nick/address exactly as it is given to the users list with the specified
levels. If you specify [-a], then if the user already exists, the specified levels are added to
the current levels the user has.
Remember, if the first level is not preceeded by an equal sign then it is a general access
level.

/auser 1,2,3 Nick

This adds this nick with these access levels to the user list (replacing an existing user of the
same name).

/auser -a 1,2,3 Nick

This adds the specified levels to this user. If the user doesnt exist, it is created.

/auser -a =1,2,3 Nick

This looks like the above command, however the =1 is very important. The =1 means that
the initial general access level is not replaced. If you had used 1 then the initial access
level would be replaced.

This is a complicated command and it's best to play around with it for a while to
understand what it does and why it does it. The way it handles/replaces levels (both the
initial general access level as well as = levels) should hopefully make sense.

/guser [-a] <levels> <nick> [type]

This works the same as the /auser command except that it looks up address of the
specified nick and adds it to the user list. It does this by doing a /whois on the given
nickname, and returning an address in the format specified by [type], a number between 0
and 4. If no [type] is given then the default is type zero.

/ruser [levels] <nick | address> [type]

If used without specifying [levels], this removes the specified user from the user list. If you
specify [levels] then these levels are removed from the current access levels of this user. If
all levels of a user have been removed, the user is removed. If you specify a [type] then
the users address is looked up with a /whois and any users in the users list matching this
address are removed.

/ruser Nick
/ruser 1,2,3 Nick
/ruser 1,2,3 Nick 1

If you use /ruser Nick! (with an exclamation mark at the end), it removes all users with an
address beginning with Nick!.

/rlevel [-r] <levels>

This removes all users from the remote users list with the specified general access level.

/rlevel 20
/rlevel =10

If the [-r] option is specified, then this applies to all the access levels for a user (not just the
first general access level). Any matching levels are removed and if a user has no more
levels left then the user is also removed.

/rlevel -r 1,5,7,8

/flush [levels]

This clears the remote user list of nickname definitions that are no longer valid.

/flush 1,2,3

For each nick in the remote user list that matches the specified levels mIRC checks to see if
that nick is on any of the channels that you are currently on. If not, the nick definition is
removed from the remote user list. If you do not specify [levels] then mIRC clears all nicks

from the remote user list that don't exist on channels you are on.

NOTE: The /guser and /ruser commands do a /whois on a nick to find the nick's address,
thus they are delayed commands since they need to wait for a reply from the server. mIRC
tries to get around this delay by maintaining it's own Internal Address List which will speed
things up in certain situations.

Access Levels and Commands

Access levels define which users can access which commands.

The default access level is 1 for users that are not listed in the Users list. All users can
access level 1 commands. The higher a user's access level is, the more commands that
user can access. You can change the default user level to allow unlisted users to access
more commands (see the /dlevel command). However, Users that are listed will still have
the same access level regardless of the default level setting.

In the Users window you can specify a list of users and their access levels in the format:

<access level> : <user nickname/address>

For example:

2:*!*jimmy@widgets.com
5:*!*parrot@crackers.inc
19:*!*xhlec@wmin.ac.uk

You can specify the users nick or the users nick!user@address. You can also use wildcards.

In the Commands window you specify a list of commands and their access levels in the
format:

<access level> : <ctcp command> : <alias commands and parameters>

For example:

1:MYLEVEL:/notice $nick You are weak! You have at least access level 1
5:MYLEVEL:/notice $nick You are a friend! You have at least access level 5
7:MYLEVEL:/notice $nick I trust you completely! You have at least access level 7
50:MYLEVEL:/notice $nick You are the boss! You have at least access level 50!

The command "MYLEVEL" can be executed by anyone who has an access level equal to or
greater than it's corresponding access level.

If jimmy does a /ctcp yournick MYLEVEL, the reply will be "You are weak! You have at least
access level 1". For parrot the reply will be "You are a friend! You have at least access level
5", and for xhlec the reply is "I trust you completely! You have at least access level 7".

The remote always replies with the highest level command that matches the users ctcp
query and that is within the users access level.

Limiting Access

Note that the following control prefixes are sensitive to positioning. It is best to set up your
definitions starting with the lowest access levels at the top of the list and increasing
numerically towards the bottom of the list.

You can prevent a user from accessing any levels by prefixing their level with an equal
sign:

Users:
=150:bannednick!user@not.nice.com

Commands:
150:*:/notice $nick Go away, you are banned from using this remote.

bannednick now has access only to command 150 and will always get this reply. Notice
that the ctcp command is a * which means that this will match any ctcp command that this
user sends.

The = prefix can also be used to give a user access to several specific levels:

Users:
10,=20,=22,=26:bannednick!user@not.nice.com

The first level in the list is treated normally and can be anything. The remaining levels are
treated as = levels (even if you dont put the = infront of them). This user can access any
commands equal to or lower than level 10, but the user also has access specifically to only
level 20, 22, and 26 commands.

You can limit commands to users with a certain access level by prefixing a command
with a plus sign, for example:

Users:
3:*!*rocky@crackers.inc
10:*!*nicky@crackers.inc
17:*!*wacky@crackers.inc

Commands:
+10:OPME:/notice $nick Hi nicky! Only users with level 10 can access this command!

You can also prevent users with higher access levels from accessing lower access
level commands by using an equal sign in the following way:

Users:
17:*!*nicky@crackers.inc

Commands:
3:HELPME:/notice $nick Help is unavailable!
4:HELPUS:/notice $nick Here is your help...
10:HELPME:=

This would prevent users with access levels higher than 10 from accessing matching
commands with levels lower than or equal to 10. Thus, nicky cannot access the level 3
HELPME but she can access the HELPUS command.

You can prevent a command from reacting to a command sent by you by using the
exclamation mark in the following way:

Users:
17:*!*nicky@crackers.inc

Commands:
3:HELPME:/notice $nick Help for level 3 is unavailable!
10!:HELPME:/notice $nick Help for level 10 is unavailable!

If nicky has this definition in her remote setup and sends herself a /ctcp nicky HELPME then
even though she has access level 17, the level 10 command will be skipped and she will
get the reply from the level 3 command.

Events that require you to have Ops

You can limit events to being executed only when you have Ops using the * prefix:

Events:
*2:ON JOIN:#mychannel:/mode $chan +o $nick

So if someone joins this channel you will only issue the auto-op command if you have Ops
on the channel. This does NOT work for command definitions, only events.

Creating Groups of Commands/Events

You can create seperate groups using the # prefix in this way:

#groupA start
1:ON JOIN:...
1:ON TEXT:...
#groupA end

You can use /enable #groupA or /disable #groupA to enable/disable group #groupA. A
group that is disabled will be ignored by the remote when processing remote
commands/events. A disabled group looks like this:

#groupA disabled
1:ON JOIN:...
1:ON TEXT:...
#groupA end

You cannot have groups within groups. You can also specify multiple groups with /enable
and /disable, eg. /enable #group1 #group2 #group3.

How to change replies to standard CTCP queries...

Here are simple examples that show how you can customize your normal ctcp replies for
finger, ping, time, etc... You do not need to modify your remote Users list, just copy the
following lines to your Commands list, and turn on the Listen option in the remote window:

1:PING:/notice $nick Hee hee, that tickles! :>
1:FINGER:/notice $nick If you want to know something about me... ask!
1:TIME:/notice $nick Time to get a real watch! :>
1:VERSION:/notice $nick I'm using mIRC v3.92! :>
1:USERINFO:/notice $nick You have reached a non-working number, please try again...

Description:

1. The number 1 at the beginning of each line specifies the access level required to execute
this command. All users have default access level 1 if they are not specified in the users
list, so all users can execute level 1 commands.

2. The word following the number 1 eg. PING is the ctcp query that the user has sent you. It
is not case-sensitive.

3. The /notice is the alias command. You should already know how to write aliases if you are
reading this section. If not, read the aliases help section first!

4. The $nick is the nickname of the user who sent you the ctcp query. Other variables you
can use are $address (which is the address of the user), $parms (the parameters that the
user sent), and $me (your own nickname).

5. The :> at the end of a line indicates that the normal reply to this ctcp query should also
be sent. If you do not add the :> then only your reply is sent.

How to Op, Invite, and Unban your friends...

This simple example shows how users can ask your remote to execute an IRC command for
them.

Users:
2:friendA
5:friendB
6:friendC
9:friendD

Commands:
1:WHOAMI:/notice $nick You are $nick your address is $address and you sent parameters
$parms
1:OPME:/notice $nick Sorry, you do not have the required access level for this command
2:INVITE:/invite $nick $parm1
5:UNBAN:/mode $parm1 -b $parm2
7:OPME:/mode $parm1 +o $nick

Description:

1. If any of your friends send you a "/ctcp yournick WHOAMI", the remote will reply with
their nick, address, and any parameters they sent.

2. All of your friends can send you a "/ctcp yournick INVITE #channel" and the remote will
invite them to the channel they specified (assuming you are on that channel).

3. friendB, friendC, and friendD can send you a    "/ctcp yournick UNBAN #channel friendX"
and if you have Op status on #channel then the remote will unban them.

4. friendD can send you a    "/ctcp yournick OPME #channel" and if you have Op status on
#channel then the remote will give friendD Op status. All other users will get the level 1
OPME reply.

How to control mIRC remotely...

Users:
10:yournick!*@youraddress

Commands:
10:PART:/part $parm1 | /notice $nick I have left channel $parm1
10:QUIT:/notice $nick Okay boss, I'm quitting... see you later! | /quit
10:SEND:/dcc send $nick $parms
10:DO

Description:

1. If you send a "/ctcp yournick PART #channel", the remote will part the specified channel
and tell you that it has done so.

2. If you send a "/ctcp yournick QUIT", the remote will quit IRC and tell you that it has done
so.

3. With the SEND command, you can ask the remote to send you a file. So if you send a
"/ctcp yournick SEND info.zip", the remote will dcc send you this file.

4. DO is the most powerful command in the remote. It executes any IRC command you
send to it. This allows you to perform commands remotely without having to define them
first. For example:

/ctcp yournick DO /join #mirc
/ctcp yournick DO /quit See you later folks...
/ctcp yournick DO /mode #mirc +o yourothernick
/ctcp yournick DO /dcc send yourothernick info.txt

WARNING: This command gives authorized users complete control of mIRC...! You should
not let anyone have access to this command unless you trust them!

How to offer files for people to DCC...

This example shows how the remote can reply differently for levels of users. Level 1 users
cannot request files from you while level 2 users can. Only a level 3 user can get the
special file. The level 3 user can also get files #1 and #2.

Users:
1:jimmy!*@widgets.com
2:parrot!*@crackers.inc
3:*!xhlec@wmin.ac.uk

Commands:
1:CMDS:/notice $nick Existing commands are : cmds, mylevel, mycmds, xdcc
1:MYCMDS:/notice $nick Commands available: cmds, mylevel, mycmds
1:MYLEVEL:/notice $nick You have access level 1

2:MYCMDS:/notice $nick Commands available: cmds, mylevel, mycmds, xdcc
2:XDCC LIST:/notice $nick Files offered: #1 readme.txt(4K) ; #2 utils.zip(132K)
2:XDCC SEND #1:/dcc send $nick c:\files\readme.txt
2:XDCC SEND #2:/dcc send $nick c:\files\utils.zip
2:XDCC SEND:/notice $nick You must specify file #1 or #2
2:XDCC:/notice $nick Try XDCC LIST
2:MYLEVEL:/notice $nick You have access level 2

3:XDCC LIST:/notice $nick Hello $nick !! Files offered: #1 readme.txt(4K) ; #2
utils.zip(132K); #3 special.zip
3:XDCC SEND #3:/dcc send $nick c:\files\special.zip
3:XDCC SEND:/notice $nick You must specify file #1, #2, or #3
3:MYLEVEL:/notice $nick You have access level 3

Special Identifiers

In the parameters supplied to an alias command you can use the following identifiers to
refer to certain values. Don't worry if you don't understand how these are used right now,
they'll be explained in the examples.

$me refers to your own nickname.

$nick and $address refer to the nickname and address of the user sending the ctcp query.
You can also use $site to refer to the portion of $address after the @.

$parms refers to the whole parameter line that the user sends with the ctcp query.

If you want to refer to particular parameters within the user supplied parameter line, you
can use:

$parmN        where N is a number    eg. $parm1    or      $parm2

To refer to all parameters from a certain position:

$parmN*    where N is the parameter position. eg. $parm3*

$parmN1-N2 which means use parameters N1 to N2, eg. $parm2-5

You will see later that it is important to specify a parameter number in certain situations.
For example, if you define a command that requires only 1 parameter and the user sends 2
parameters then this could affect the way the command works.

Other notes...

Another example of a multiple command is:

5:XDCC SEND #1:/notice $nick I acknowledge your XDCC SEND #1 | /dcc send $nick
somefile.zip

As you can see, things can get a bit messy! It is wise to test out every command you define
to make sure it does what you want and nothing else. For example:

5:OPME:/mode $parms +o $nick

With this definition, if a user supplies more than one parameter then the /mode won't work
or it might do something unpredictable. You should redefine the command as:

5:OPME:/mode $parm1 +o $nick

This makes sure that only the first parameter that the user supplies is used in the final
command executed by the remote.

Redirection

You can also tell the remote to execute several commands by using the :> switch. This is
useful mainly because it saves you from having to retype similar commands. For example:

5:HELP1:/notice $nick This is help1 :> HELP2
5:HELP2:/notice $nick and help2 :> HELP3 :> HELP4
5:HELP3:/notice $nick and help3
5:HELP4:/notice $nick and help4

Be careful you don't do this:

5:HELP1:/notice $nick This is help1 :> HELP2
5:HELP2:/notice $nick and help2 :> HELP1

As this will result in an infinite loop. The remote does NOT check for this. You've been
warned!

Pass through commands

You can allow only certain commands to be executed by doing this:

5:PING
5:VERSION
5:*:!

The remote will now only allow replies to PING and VERSION. All other level 5 commands
will be ignored. The exclamation mark ! at the end of the line tells the remote to halt any
further processing of level 5 commands.

Commenting out commands and events

You can comment out definitions by prefixing them with a ; (semi-colon) or REM.

5:PING1
rem 5:PING1
;5:*:PING1

Ordering of definitions
Remember that many of the prefixes and controls are sensitive to numerical order of the
definitions. The safest thing is to order your definitions starting with the lowest access
levels first and increasing numerically down the list.

DCC Send

DCC Send allows you to send a file to a user by specifiying their nickname and the name of
the file you want to send. Once you have input the nickname and the filename, select
"Send" and mIRC will send information to the nickname you specified telling them that you
want to send a file. The user then has to accept your send request, at which point the file
transfer should begin.

You can also select multiple files to send at one time but only up to a maximum of nine.

The Packet Size is the number of bytes that mIRC will send to another client in one
packet. The minimum is 512, the maximum is 4096. Each DCC Send session can have a
different packet size... just change it before you start the DCC Send. mIRC can receive
packets up to 4096 bytes.

If you check minimize then the dcc send window(s) will be minimized automatically.

The Fill Spaces option is only available in the 32bit version and only under operating
systems that allow spaces in filenames. It is highly recommended that you leave this option
turned on. For a better explanation, read this.

NOTE: There is an experimental DCC Fast Send option which you can try out.

DCC Chat

DCC Chat allows you to talk privately by connecting directly to another client, bypassing
the IRC network. Enter the nickname of the user and select "OK" and mIRC will send
information to the nickname you specified telling them that you want to DCC Chat. The
user then has to accept your chat request, at which point you can talk with them normally
as if you were in a query window on IRC. If a user replies to a /dcc chat request by initiating
another dcc chat with you then mIRC treats this as an acceptance of it's own request.

If a user sends you a chat request, a dialog will popup asking you whether you want to talk
to them. You can then accept or decline.

DCC Get

The DCC Get dialog only appears in response to a send request from another user. If you
choose to accept the file that the user wants to send you, mIRC will tell the sender to begin
the file transfer, at which point you should begin receiving the file.

DCC Options

Show Get Dialog/Auto-get file/Ignore all
By default, a send request must be accepted by you before transfer begins. However, if you
select the auto-get file option then mIRC will automatically accept a send request and begin
receiving a file. It will also minimize the receive window if you select the minimize option.
You can also have mIRC close the get window automatically after a tranfser is complete by
selecting the Auto-close get window option. If you select Ignore All then all incoming dcc
send requests are ignored.

On transfer completion...
mIRC will perform the selected options once a transfer has been completed. mIRC will
indicate in the status window whether the transfer was a success or a failure. The Notify
with beep depends on the settings in the Extras window.

Show progress as percent
For DCC Get, this depends on whether the sending client provided the size of the file when
it initiated the send session. If no file size was sent, then percentage cannot be displayed
and only the bytes received are shown.

Auto-resume existing files
If someone tries to send you a file that already exists in your dcc get directory then mIRC
usually pops up a dialog asking you if you want to overwrite/resume/rename the file.
Checking this option forces mIRC to always resume a file automatically if it already exists.

Show Chat Dialog/Auto-accept chat/Ignore all
By default, a chat request must first be accepted by you before chatting begins. However, if
you select the auto-accept option then mIRC will automatically open a DCC chat window
and accept the chat request. It will also minimize the chat window if you select the
minimize option. If you select Ignore All then all incoming dcc chats are ignored.

Get/Chat Dialog Time Out
When a user sends you a Send or Chat request, a dialog pops up and waits for you to
accept or decline. The dialog will wait the specified number of seconds before disappearing.

Send/Get Transfer Time Out
During a transfer mIRC will wait the specified number of seconds for a response from the
other client before closing the connection.

Fileserver Time Out
mIRC will close the fileserver window if a user has been idle for the specified number of
seconds.

Max. DCC Sends
This limits the number of simultaneous remote DCC Sends. ie. it does not apply to you
manually initiating a DCC Send but it does apply to users who request a DCC Send
remotely.

Max. Fileservers
This limits the number of users that can be served simultaneously.

DCC Get Directory
The directory where received files are stored.

DCC Resume Protocol

In it's current form the protocol is very simple.

User1 is sending the file.
User2 is receiving the file.

To initiate a DCC Send, User1 sends:

PRIVMSG User2 :DCC SEND filename ipaddress port filesize

Normally, if User2 accepts the DCC Send request, User2 connects to the address and port
number given by User1 and the file transfer begins.

If User2 chooses to resume a file transfer of an existing file, the following negotiation takes
place:

User2 sends:

PRIVMSG User1 :DCC RESUME filename port position

filename = the filename sent by User1.
port = the port number sent by User1.
position = the current size of the file that User2 has.

User1 then responds:

PRIVMSG User2 :DCC ACCEPT filename port position

This is simply replying with the same information that User2 sent as acknowledgement.

At this point User2 connects to User1 address and port and the transfer begins from the
specified position.

NOTE: the newer versions of mIRC actually ignore the filename as it is redundant since the
port uniquely identifies the connection. However, to remain compatible mIRC still sends a
filename as "file.ext" in both RESUME and ACCEPT.

ON CHAT/SERV

To listen for messages in DCC Chat windows:

1:ON CHAT:boo:/msg =$nick boo back!

If someone says "boo!" in a dcc chat window, the remote replies with "boo back!". Note
that to send this as a dcc chat message to this user you have to use the standard "="
prefix with the nick. ie. =$nick

To listen for messages in Fileserver windows:

1:ON SERV:*:/msg =$nick I say $nick, what do you mean by " $parms " ?

This listens for any message from the user and sends the message back. Notice that I can
use both =$nick for a dcc chat message and also $nick for normal messages.

See the ON TEXT event for an explanation of the uses of the "text" section.

NOTE: The above commands react to all users level 1 and above because of the way dcc
chat works.

How to listen for events...

The events window allows you to specify how mIRC reacts to certain types of events. The
set of events currently available is limited to the most basic types, each of which will be
given simple examples to illustrate how they work.

The event handler listens to events caused by users specified in the Users List (which it
shares with the Commands list). Each event has an access level which is matched to a
users access level. The default level works the same as in the commands list. You can also
define normal command defintions in this window.

The examples cover each type of event:

The ON TEXT event listens to messages from users either on certain channels or in query
windows.

The ON CHAT/SERV events listen to messages from users in dcc chat and fileserver
windows.

The ON JOIN/PART events react to users joining or parting a channel.

The ON KICK event occurrs when a user is kicked from a channel.

The ON OP/DEOP events occur when a user is opped or deopped.

And a few Other Events which react to various situations.

ON TEXT

Keys:
? = Any private message
= Any channel
#mirc = Channel #mirc
* = Both private and channel messages

The match text can contain the * wildcard, for example:
* = any text
text = if user said only this word
text* = if user started line with this word
*text = if user ended line with this word
text = if user said this word anywhere

To listen for messages on channels...

1:ON TEXT:hello*:#:/msg $nick Hello back!

This command listens for the message "hello" from any user on any channel and replies
with the message "Hello Back!".

1:ON TEXT:hello*:#mIRC:/msg $chan Welcome to #mIRC!

This command listens for the message "hello" from any user on channel #MIRC and replies
with the message "Welcome to #mIRC!".

5:ON TEXT:goodbye:#mIRC:/msg $chan Goodbye $nick!

This command listens for the message "goodbye" from any user with access level 5 on
channel #MIRC and replies with the message "Goodbye NickName!"

To listen for private messages...

1:ON TEXT:help:?:/msg $nick Please use /ctcp $me help for more information...

This command listens for a private message with the word "help" in it from any user and
replies with the message " Please use /ctcp mynickname help for more information..."

1:ON TEXT:*:?:/msg $nick I'm not here! Go away!

This command listens for any private message from any user and replies with the message
"I'm not here! Go away!"

To listen for any messages...

1:ON TEXT:*:*:/msg $nick Not Listening...

This command listens for any message both private or public from any user and replies
with the message "Not Listening..."

The ON NOTICE and ON ACTION events work exactly the same way as the ON TEXT
event.

There is also an ON SNOTICE event which listens for server notices and can prevent them
from being displayed. The format is slightly different:

1:ON SNOTICE:Client connecting:!
1:ON SNOTICE:Client exiting:!

This would prevent "client connecting" and "client exiting" server notices from being
displayed.

NOTE: You cannot test out these events by typing text to yourself! They are initiated by
someone else saying something in a channel or in a private message.

ON JOIN/PART

You can have mIRC perform certain actions whenever a user joins a channel...

2:ON JOIN:#:/msg $chan Welcome $nick!

When a user with access level 2 joins any channel, you say "Welcome nickname" on the
channel.

10:ON JOIN:#mIRC:/kick $chan $nick | /msg $nick And OUT of $chan $nick goes! :)

When a user with access level 10 joins channel #mIRC, you immediately kick them out and
send the above message to them.

14:ON PART:#:/msg $chan Yahoo! $nick is gone! ;)

When a user with access level 14 parts any channel you tell everyone how happy you are :)

ON KICK

2:ON KICK:#:/kick $chan $nick | /invite $knick $chan | /msg $nick That person is my friend!

When a certain user is kicked out of any channel you kick the person who kicked them,
send them a message, and invite the person who was kicked back to the channel.

2:ON KICK:#mIRC:/notice $me Hey! Wake up! $nick was just kicked with the message "
$parms "

When a certain user is kicked from a channel you send yourself a notice telling you what
just happened.

You can compare the levels of the kicker and the kicked by prefixing the line with
<,>,<=,=>,<>, or =, in the following way:

>=2:ON KICK:#mIRC:/msg $chan $nick kicked $knick (legal)
1:ON KICK:#mIRC:/msg $chan $nick kicked $knick (illegal)

In this situation, if the kickers level is larger than or equal to the kicked users level, then it
is a legal kick. Otherwise, it defaults to the second ON KICK line which indicates that it is an
illegal kick. Remember, this is comparing the kickers and kicked users levels and has
nothing to do with with the level "2" in the definition.

Note that this event works on a nickname and not an address. This is because the
IRC server only sends the address of the user doing the kicking and not of the user being
kicked.

ON OP/DEOP

These two events are concerned with operator status. The event is performed for each user
that is opped/deopped:

100:ON OP:#:/mode $chan -o $nick | /msg $nick Don't Op that person!

When a user with access level 100 is opped, you immediately deop them and send a
mesage to the person that opped them.

9:ON DEOP:#mirc:/mode $chan +o $opnick | /msg $nick Hey! That person is my friend!

When a user with access level 9 is deopped, you immediately op them and send a mesage
to the person that deopped them.

1:ON SERVEROP:#:/mode $chan -o $opnick | /notice $me $opnick was opped by $nick!

When a user is opped by a server I deop the user and send myself a notice. The $nick
refers to the server that did the opping.

You can compare the levels of the opper and the opped by prefixing the line with
<,>,<=,=>,<>, or =, in the following way:

>=2:ON DEOP:#mIRC:/msg $chan $nick deopped $opnick (legal)
1:ON DEOP:#mIRC:/msg $chan $nick deopped $opnick (illegal)

In this situation, if the deoppers level is larger than or equal to the deopped users level,
then it is a legal deop. Otherwise, it defaults to the second ON DEOP line which indicates
that it is an illegal deop. Remember, this is comparing the oppers and opped users
levels and has nothing to do with with the level "2" in the definition.

Note that these events work on nicknames and not addresses. This is because the
IRC server only sends the address of the user doing the opping/deopping and not of the
users affected ie. it only sends the nicknames of the users being opped/deopped.

Other Events

3:ON NOTIFY:/msg $me Hey, wake up! $nick just joined IRC!

When a user joins IRC and you have their nick in your notify list (and the notify is turned on)
then this will react to the notification.

2:ON INVITE:#mIRC:/join $chan | /describe $chan appears in a puff of smoke!

When a user invites you to channel #mIRC, you automatically join the channel and send
the above action to it.

2:ON NICK:/describe $newnick thinks $nick was a nicer nickname!

When a user changes their nickname, you tell them you thought their last nickname was
nicer.

2:ON QUIT:/notice $me Hey! Wake up! $nick just quit with the message " $parms "

When a user quits IRC you alert yourself with a notice.

2:ON TOPIC:#:/describe $chan admires $nick's new topic!

When a user changes the channel topic...

1!:ON MODE:#mirc:-spmi+tnlk 20 mykey:/notice $nick illegal $chan mode change!

When someone changes the #mirc channel mode, mIRC enforces the "-spmi+tnlk 20
mykey" channel mode instead, and sends the user a notice. This reacts to any channel
mode change, so there is no way to react to specific mode changes. The ON SERVERMODE
works the same way but reacts to server mode changes.

DCC Fast Send

DCC Fast Send is a simple and experimental extension to a normal dcc send. The aim was
to see if it was possible to write a dcc send algorithm that would a) increase transfer speed,
and b) remain compatible with the standard dcc get routine.

Basically, dcc fast send attempts to maintain a steady flow of packets by sending slightly
ahead of acknowledgements. It does not require the receiving client to implement a special
DCC Get algorithm. ie. it will/should work with any client.

By varying the packetsize (using /dcc packetsize <size>) and turning on the fast dcc send
option, it is possible to achieve a fair increase in transfer speed. The packetsize is crucial to
finding a good balance for maintaining a steady packet flow. 4096 bytes is not necessarily
the best choice. It is probably better to use something like 2048 bytes.

However, how well it works really depends on both the senders and receivers internet setup
and connection speed.

You can turn DCC Fast Send on and off using:    /fsend [on|off]

Note:
1.This option has been included just to see if it really does work for most people. It's
possible that it might not increase transfer speed for you and in fact, it might even make
things slower.
2.If you have problems DCC Fast sending files, then just use the normal DCC send.

mIRC-specific Commands

The following commands are either mIRC-specific or slightly modified standard
commands...

/amsg <message> and /ame send the specifed message or action to all channels which
you are currently on.

/auser and related commands are listed in the remote section.

/ban [#channel] <nickname> [type] bans someone from the current channel using
their address. To do this, it first does a /whois on the user, which gives it the user's address,
and then it does a /mode # +b <user address>.

There are four levels of ban, the type ranges from 1 to 4, least to most severe respectively.
If you do not specify a ban type, then mIRC uses the whole nick!*user@host.domain to do
the ban. If you are banning an IP address then a wild card replaces the last number of the
IP address. If you are on the channel then the #channel specification is not necessary.

Type 1:    *!*user@host.domain
Type 2:    *!*@host.domain
Type 3:    *!*user@*.domain
Type 4:    *!*@*.domain

Default: nick!*user@host.domain

NOTE: This command uses the Internal Address List maintained by mIRC.

/beep <number> <delay> beeps a number of times with a delay.

/channel pops up the channel central window (only works in a channel)

/clear clears the entire scrollback buffer of the current window.

/closemsg [messagewindow] closes the specified message window, useful in remote
commands.

/creq [ask | auto | ignore]    is the command line equivalent of setting the DCC Chat
request radio buttons in the dcc options dialog (see /sreq below).

/dcc send can take multiple file names, the format is:

/dcc send <nickname> <file1> <file2> <file3> ... <fileN>

This will initiate multiple dcc send sessions to the specified user.

/dde [-r] <service> <topic> <item> [data] allows you to send information to other
applications. Please see DDE Control for a full explanation.

/disconnect forces a hard and immediate disconnect from a server. This is different from
the /quit command which sends a quit message to the server and waits for the server to
disconnect you.

/dns <nick/address> is used to resolve addresses. If mIRC sees a "." in the name you
specify it assumes it's an address and tries to resolve it. Otherwise it assumes it's a
nickname and does a /whois to find the users address and then resolves it. If you give it an
IP address, it looks up the host name.

/echo [colour] [#channel] <text>    this prints the specified text in window #channel.,
using the specified colour (1 to 7). Note that this is only printed, it isn't sent to the server.
It's probable use is as a debugging aid for the remote.

/exit forces mIRC to closedown and exit.

/finger <nick/address> does a finger on a user. If you specify an address then the
address is immediately fingered. If you specify a nickname then the users address is looked
up using a /whois and then it is fingered.

/flood <numberoflines> <seconds> <pausetime> is a crude flood control method.
The format is:

This translates to: if mIRC has sent a certain number of lines to the server within a specified
number of seconds then prevent mIRC from sending replies that are initiated remotely ie.
by another user (such as a version reply). mIRC will not respond to user queries for the
specified number of seconds.

/flood 10 5 3

If mIRC has sent 10 lines in the last five seconds, prevent any further sending to the server
for 3 seconds.
You will still be able to carry on IRCing normally, but any replies requested by other users
will not be acknowledged.

/font pops up the font dialog for the active window.

/fsend [on | off] allows you to turn dcc fast send on or off.

/fserve initiates a fileserver session to another user. See the File Server section.

/help brings up the Basic IRC Commands section in the mIRC help file. You can also do
/help <keyword> and if the keyword matches a help topic you will be taken to it.

/ignore [-ar] <nick> [type] allows you to ignore messages from the specified nick. If you
do not specify a type then only the users nick is ignored. If you specify a type then the
users address is looked up using a /whois and all messages coming from this address will
be ignored.

/load <-apuce> <file.ini> is the command line equivalent of the Load button in the
alias, popups, and remote dialogs and is used to load one of the following sections where a
= aliases, p = popups, u = users, c = commands, and e = events. For example, if you
wanted to load aliases from a file you would do:

/load -a aliases2.ini

NOTE: You can only refer to one section at a time, so you can't do /load -uce some.ini.

/log [on | off] allows you switch logging on and off for a window.

/notify [-ar] nickname adds or removes the specified nickname to/from the notify list. You
can also use the [-sh] switches to show or hide the notify window.

/omsg [#channel] <message>    and /onotice send the specified message to all channel
ops on a channel. You must be a channel operator to use these commands. If the #channel
isn't specified, then the current channel is used.

/partall parts all of the channels you are currently on.

/protect [-ar] nickname adds or removes the specified nickname to/from the protect list.

/play [-cp q# m# rl# t#] [channel/nick] <filename> [delay] is a powerful command
that allows you to send text files, or parts of them, to a user or a channel.

The [delay] is in milliseconds. If you play files too quickly to a server you will probably be
disconnected for flooding. The default setting is 1000 ie. 1 second. Empty lines between
text are treated as a delay.

/play c:\text\mypoem.txt 1500

The -c switch forces mIRC to interpret lines as actual commands instead of plain text.

The /play command queues requests by users; it does this because if it tried to play all
requests at the same time you would probably be disconnected from a server for flooding.

The -p switch indicates that this is a priority play request and should be placed at the head
of the queue for immediate playing. The current play request will be paused and will
resume once this play request is finished.

The -q# switch specifies the maximum number of requests that can be queued. If the
queue length is already larger than or equal to the specified number then the play request
is ignored.

/play -q5 c:\text\info.txt 1000

The -m# switch limits the number of requests that can be queued by a specific
user/channel. If the user/channel already has or exceeds the specified number of requests
queued then the play request is ignored.

/play -m1 info.txt 1000

The above line limits each user to a maximum of one request at a time and ignores all of
their other requests.

NOTE: The -q# and -m# switches only apply to a /play initiated via a remote definition,
not by you.

To combine the above switches you would do:

/play -cpq5m1 info.txt 1000

The -r switch forces a single line to be chosen randomly from a file and played.

/play -r action.txt 1500

The -l# switch forces the specified line-number to be read from a file and played.

/play -l25 witty.txt 1500

For both -r and -l# the first line in the file must be a single number specifying the number
of lines in the file.

The -t switch forces mIRC to look up the specified topic in the file and play all lines under
that topic. For example:

/play -thelp1 c:\help.txt

In the help.txt file you would have:

[help1]
line1
line2
line3

[help2]
...

mIRC will play everything after [help1] and stop when it reaches the next topic header or
the end of the file.

You can also use the $pnick identifier in commands which identifies the nick/channel to
which you are playing.

/pop <delay> [#channel] <nickname> performs a delayed Op on a nickname. The
purpose of this command is to prevent a channel window filling up with Op mode changes
whenever several users have the same nickname in their auto-op section.

mIRC will pause around <delay> seconds before performing the Op. If <delay> is zero, it
does an immediate Op. Before performing the Op it checks if the user is already Opped. If
you do not specify the #channel, the current channel is assumed.

/raw [-q] sends any parameters you supply directly to the server. You must know the
correct RAW format of the command you are sending. Useful for sending commands which
mIRC hasn't implemented yet. The -q switch makes the raw work quietly without printing
what it's sending.

/raw PRIVMSG nickname :Hellooo there!

/run <file.exe> [parameters] allows you to run the specified program with parameters.

/ftp /run c:\comms\ftp\ftp.exe sunsite.unc.edu

This runs the ftp program with the parameter sunsite.unc.edu.

/edit /run notepad.exe $?

This asks you for a parameter and runs notepad using the parameter as the filename.

/save <-apuce> <file.ini> is the command line equivalent of the SaveTo button in the
alias, popups, and remote dialogs and is used to save    the specified section, where a =

aliases, p = popups, u = users, c = commands, and e = events. For example, if you wanted
to save aliases to a file you would do:

/save -a aliases.ini

NOTE: You can only refer to one section at a time, so you can't do /save -uce some.ini.

/say <message> lets you define an alias that writes directly to a channel as if you were
saying something. So "/say Hello there" would be the same as just typing "Hello there".
This is useful in an alias when you want to ask the same question (or send the same
information) again and again.

/info /say Please note that the games server is currently down and will be offline for a few
hours...

NOTE: You cannot use this command in the remote section. Use /msg #channel
<message> instead.

/server <server> [port] [password] connects you to a server.

/server irc.server.co.uk 6667 mypassword

If you type /server with no parameters, mIRC will connect to the last server you used. If you
use the server command while still connected, you will be disconnected with your normal
quit message and will then connect to the specified server.

You can also use /server N which connects to the Nth server in the server list in the setup
dialog.

/speak <text> sends the specified text to monolog which is a program that speaks
whatever text is sent to it.

/sound [nick/channel] <file.wav> <message> sends a sound request to another user,
the format is:

See the Sound Options dialog for more information.

/sreq [ask | auto | ignore] is the command line equivalent of setting the DCC Send
request radio buttons in the dcc options dialog (see /creq above).

/timer activates the specified timer to perform the specified command at a specified
interval, and optionally at a specified time. The format is:

/timer[N] [time] <repetitions> <interval in seconds> <commands>

/timer1 0 20 /ame is AWAY!

Timer1 will repeat an all channel action every 20 seconds until you stop the timer.

/timer5 10 60 /msg #games For more info on the latest games do /msg GaMeBoT info

Timer5 will repeat this message to channel #games every sixty seconds and stop after 10
times.

/timer9 14:30 1 1 /say It's now 2:30pm

This will wait until 2:30pm and will then announce the time once and stop.

To see a list of active timers type /timers. To see the setting for timer1 type /timer1. To
deactivate timer1 type /timer1 off. To deactivate all timers type /timers off. If you are
activating a new timer you do not need to specify the timer number, just use:

/timer 10 20 /ame I'm not here!

And mIRC will allocate the first free timer it finds to this command.

You can force identifiers to be reevaluated when used in a /timer command by using the
format $!me or $!time.

/timestamp [on|off] turns time-stamping of events on/off. This attempts to timestamp
most events that occur.

/url [-d] [on | off | hide] pops up the URL list window. If you specify the [-d] then all "?"
marked items will be deleted before showing the window.

You can also use [on | off] to turn URL catching on or off and [hide] to hide the URL
window if it is currently showing.

See URL Catcher options for other settings.

/uwho [nickname] pops up a user window showing information about the specified user. It
is the same information you would get if you did a "/whois nickname". You can also build up
a list of nicknames and their associated real name and machine address. The format is:   
/uwho nickname

/wavplay <sound.wav> plays the specified wave file. If a sound is currently playing this
command is ignored.

/write [-cid l#] <filename> [text] allows you to write lines to a file.

/write store.txt This line will be appended to the file "store.txt"

The -c switch clears the file completely before writing to it, so it allows you to start with a
clean slate.

/write -c c:\info.txt This file will be erased and have this line written to it

The -l# switch specifies the line number where the text is to be written. If you do not
specify a line number then the line is added to the end of the file.

/write -l5 c:\info.txt This line will overwrite the 5th line in the file

The -i switch indicates that the text should be inserted at the specified line instead of
overwriting it. If you do not specify any text then a blank line is inserted. If you do not
specify a line number then a blank line is added to the end of the file.

/write -il5 c:\info.txt This line will be inserted at the 5th line in the file

The -d switch deletes a line in the file. If you don't specify a line number then the last line
in the file is deleted.

/write -dl5 c:\info.txt

The above command will delete the 5th line in the file.

If you do not specify any switches then the text is just added to the end of the file.

Other features...

These sections must be read as they describe various aspects of mIRC that aren't
standard.

mIRC-specific Commands

The System Menu
Text Copy and Paste

The File Server

Special Key Combinations
Command Line Parameters

DDE Control

Miscellaneous Stuff

The File Server

The /fserve command opens up a fileserver session using a DCC Chat to the specified user.
You must specify a homedirectory. The user will be limited to accessing only files and
directories within this homedirectory. The format is:

/fserve <nickname> <maxgets> <homedirectory> <welcome text file>

The maxgets is the maximum number of simultaneous dcc gets that the user can have
during a fileserver session. The welcome text file is text that is sent to the user when they
first connect. For example:

/fserve goat 5 c:\users\level1 level1.txt

This will initiate a filserver session to user goat with his homedirectory as c:\users\level1
and will send goat the text in the level1.txt file (presumably informing him that he is a
level1 user and what files he can access etc.). The user can only have 5 simultaneous gets.

In each directory, you can place a dirinfo.srv file which describes that directory. Everytime
the user does a CD to change into a directory, mIRC will look for this file and if it finds it,
the text in it will be sent to the user.

The commands availabe to a user once connected are:

cd - change directory.

dir [-b|k] [-#] [/w] - lists the name and size of each file in the current directory. The /w
switch forces a wide listing. The [-b|k] selects bytes or k's. The [-#] specifies the number of
files on each line in a horizontal listing.

ls [-b|k] [-#] - lists the name of each file in the currenty directory using a wide listing.

get <filename> - asks the fileserver to DCC Send the specified file.

read [-numlines] <filename.txt> - reads the specified text file. The user will be sent a
default of 20 lines and then prompted whether to continue listing. The -numlines option
changes the default number of lines to a value between 5 and 50.

help - lists the available commands.

exit or bye - terminates the connection.

The above commands have been greatly limited in the hope that this will prevent a security
breach. If the security aspects of the fileserver trouble you, it is recommended that you use
your fileserver with a SUBST'd drive. Since the CD command isn't capable of drive changes,
this should limit the user to only that portion of your hard disk.

NOTE:
1.It will improve performance a lot if you make sure that your directories are not too large.
If a directory has a large number of files try to split them up into subdirectories.
2.If a user is idle too long the fileserver will automatically close the connection. You can set
the idle time out in the DCC Options dialog.
3.A user is limited to opening a single fileserver session at any one time. If mIRC initiates a

fileserver session to a user and that user doesnt respond then the fileserver session will
have to time-out and close before that user can ask for another session.

System menu

If you click the system menu button in the top left hand corner of a window (ie. the button
you usually double-click to close a window), it will popup the usual system menu but with a
few added functions (these vary depending on the type of window):

Window: You can tell mIRC to remember or forget the position and size of the status
and channel windows. If they are remembered, the next time a window opens up, it will do
so in the saved position. If you choose the reset menu item, the window will be moved
back to it's previously saved position. Note that if a windows saved position lies outside the
size of the main window then it will open in a default position and size. To force a window to
open up in default positions assigned by windows, select forget.

Buffer: You can clear the text in the current window buffer or you can save the text to a
file. The filename is automatically taken from the name of the window.

Font: This allows you to change the current or default font for a window. The font settings
for each window will be remembered across sessions. The only fonts shown in the font
dialog are those which mIRC can properly display.

Logging: If you select this, the text to the window will be logged to a file. This setting stays
on across sessions until you switch it off. This function is only available for the status,
channel, and query windows. The filename is automatically taken from the name of the
window.

Beeping: This appears only in Channel, DCC Chat, and Query windows. If selected then
mIRC will beep any time a message is sent to the window if it isn't active. This setting is
remembered across sessions for each window.

Text Copy and Paste

To copy text from a window, you mark the text as usual with the mouse by pressing the
left mouse-button and dragging it. The moment you release the left mouse-button, the text
will be copied into the clipboard.

To paste text you can then do the usual Shift-Insert key combination to paste the text any
where you want.

The limitation: You can only copy the currently displayed text. To copy text from another
page, you must scroll up/down to it and then copy it. If you want to store most of the text
you see on a channel, you might want to use the logfile/buffer options in the System Menu.

The explanation: the use of colour in mIRC means that a simple text box cannot be used
since text boxes can display only plain text (and they also have other limitations). However,
text boxes also have built in cut/copy/paste routines which unfortunately are unavailable to
a graphic window. This means that I had to code the mark/copy routine myself. I'm not sure
which ran out first, my patience or my programming ability :-)

Channels Folder

This folder allows you to store some of your favourite channels for quick access. The
channels are listed in alphabetical order and you can store as many as you want.

List Channels

List!
This allows you to retrieve a list of currently active channels from the IRC server. This list
can be quite long and depending on your connection it might take several minutes to
download. The IRC Server actually sends the whole list, regardless of the filters you
specify. You will not be able to do anything on IRC until this retrieval has been completed.

NOTE: This button only appears if you used the Channels List toolbar button to display this
dialog.

Relist!
This allows you to respecify the list parameters without having to retrieve the whole list
again from the IRC server.

NOTE: This button only appears if you used the popup menu in the Channels List window to
display this dialog.

Match text
You can enter several words (seperated by spaces) which mIRC will look for in channel
names. Only those channels which match any of the words you specify will be listed. If you
leave this empty then all channels will be listed.

Match topic
If this is turned on then mIRC will apply the Match Text procedure to channel topics as well.
So only channel topics that match any of the words in the Match text editbox will be listed.

Extract URLs
This automatically extracts URLs from channel topics of listed channels and adds them to
the URL List window.

Do not sort
This prevents the channels list from being sorted.

Number of people
This allows you to limit the channels list to those channels which contain a number of
people ranging between the specified minimum and maximum.

Lock/Unlock
This allows you lock the Hide parameters with a password thus preventing anyone from
changing the Hide settings. The same password must be used to unlock this.

Hide channels which match...
You can enter several words (seperated by spaces) which mIRC will look for in both channel
names and topics. Any channels which match any of these words will be excluded from the
channels list.

Hide non-alphanumeric channels
This will filter out any channels that begin with characters that aren't numbers or letters.

NOTE: Remember that you can right-click in the Channels List window to pop up the
channels list menu.

URL Catcher

mIRC's URL feature currently works with the three major WWW Browsers.

Enable URL Catcher
If this option is turned on mIRC will catch references to URLs and store them in the URL
listbox. Turning on this option slows down mIRC a bit since it has to scan each incoming line
before printing it, so if you don't need this option it will speed things up if you turn it off.

mIRC looks for URLs beginning with "http://", "ftp://", "gopher://", "www.", and "ftp.". mIRC
also checks to make sure addresses are not added to a list if they already exist. Addresses
longer than 256 characters are ignored.

On View...
When you select View from the popup menu to view a URL, mIRC can ask your browser to
open a new seperate URL window and it will also activate it if required.

On Send...
When sending URLs to a channel, query, etc. mIRC can send only the URL or both the URL
and it's description.

Delete All ? marked URLs on exit
To prevent your URL list getting too long you can choose to have all ? marked items deleted
when you exit mIRC. Any items whose marker has been changed to something other than ?
will remain in your list for future reference.

Location and name of WWW browser
This specifies your WWW browser so that mIRC can run it (if it isn't already running) when
you select view from the popup menu.

NOTE: You can click your right mouse-button in the URL window for a popup menu which
provides all the URL functions.

Sound Requests

Accept sound requests
If this option is turned on, mIRC will listen for SOUND requests from other users. You can
send a sound request to another user using the command:

/sound [nick/channel] <file.wav> <message>

If a [nick/channel] is not specified, the message is sent to the current query or channel. The
sound file must end in ".wav", and the accompanying message is mandatory. The message
appears exactly like an action command. The user receiving the sound request must 1)
already have the specified .wav file and 2) be listening for sound requests.

A sound request is basically a CTCP command, so you could also just do /ctcp [nick] SOUND
file.wav message.

On Sound Request...
If a sound is already playing and a new sound request is received, you can either have
mIRC halt the currently playing sound and play the new sound, or you can choose to have
mIRC ignore the new sound.

mIRC can also warn you if a user has requested a sound that you don't have so that you
can then ask the user for that sound.

Location of wave files
Whenever a sound is requested, mIRC will look in this directory for it.

The Internal Address List

mIRC maintains an internal address list of all users who are currently on the same
channels as you.

This address list is used by the /guser, /ruser, /ban, /ignore, /finger, and /dns commands to
quickly find a user's address without resorting to a /whois.

A user's address is added to the list either when they join the channel, send a message to
a channel, or make a mode change.

A user's address is removed from the list when they are no longer on any of the channels
which you are currently on.

The reason why only addresses for users on the same channels as you are stored is
because this guarantees the integrity of the list. ie. that a specific nickname is associated
with a specific address.

Note
Maintaining the integrity of the internal address list requires quite a bit of processing. For
people with faster computers this won't make a difference but for others this might slow
down IRCing quite a bit, especially if you are on several channels with many messages,
modes, joins, parts, etc. mIRC has to keep checking it's internal list to make sure it is
updated correctly.

You can turn the Internal Address List off in the remote dialog if you find that it is slowing
down your IRC session too much.

New Format for Remote Commands and Events definitions

The new format has been introduced in order to simplify writing definitions for the remote.

The new format is essentially identical to the old format except that now there is no
seperation between the aliases section and the parameters section in a definition,
thereby simplifying definitions greatly.

For example, in the old format:

1:PING:/notice *1:$nick -POING!-

the new simplified format:

1:PING:/notice $nick -POING!-

mIRC will automatically convert your old definitions to the new format.

NOTE: mIRC now also stores the commands and events sections in the mirc.ini file with a
different prefix. If the command or event sections in the mirc.ini file use the new prefix then
mIRC will assume that they have already been converted and will not try to convert them
again.

Special Key Combinations

F1 - shows the help file and is context sensitive, so you can press it in a dialog and it will
bring up the help file section describing that dialog. Remember that if this key is redefined
as an alias it will no longer work as the help key.

Control-Tab - switches quickly between windows.

Tab - inserts a "/msg nickname" into the editbox of the window you are currently on, where
"nickname" is the nick of the last person that messaged you.

Cursor Up/Down - browses the command line history buffer for a single-line editbox. For a
multi-line editbox you must use Control-Cursor Up/Down since Cursor Up/Down are used
for editing.

Page Up/Down - browses the scrollback buffer of the active window. You can use Control-
Page Up/Down to browse the buffer a line at a time.

ESCape key - this quickly minimizes the active window, it must be turned on in the Extras
dialog.

Command Line Parameters

At this time there are only a few parameters you can specify on the command line:

 -s<server:port>    forces mIRC to connect to the specified server and port on startup.

 -j<#chan1,...,#chanN>    forces mIRC to join the specified channels on connect.

 -n<nick1,nick2> sets your nickname and alternate nickname to these nicks.

 -i<filename.ini>    forces mIRC to use the specified INI file.

For a more standard definition to use with WWW browsers, you can also use the
following command line parameters to connect to a server and join channels:

//server:port/#channel,#channel

For example, In the WWW browser you could then specify mIRC as "irc" and create a link
like:

irc://server:port/#channel,#channel

And mIRC will automatically connect to the specified server and join the specified channels.

You can also do this (in the WWW browser link):

irc:#channel,#channel

Here mIRC will connect to the default server in mirc.ini and join the specified channels.

The FAQ, Homepage, and other information

For the latest information on bugs, fixes, solutions to problems, new releases, etc. please
see the mIRC homepage and FAQ, before asking questions, at one of the following sites:

 http://huizen.dds.nl/~mirc/index.htm
 http://www.geopages.com/Colosseum/1822/
 http://mars.superlink.net/user/mook/mirc/
 http://sunsite.nijenrode.nl/ftp/pub/mirc/
 http://www.gil.com.au/~strike/

The Homepage and FAQ might take a few days to update right after a new version release.

You can find IRC-related information, as well as other IRC clients, at the following sites:

 ftp://cs-ftp.bu.edu/irc
 http://urth.acsu.buffalo.edu/irc/WWW/ircdocs.html

IRC Switches

Connect on startup
If this is turned on, mIRC tries to connect to the default IRC server automatically when it is
run.

Reconnect on disconnection
If an IRC server disconnects you without you having typed /quit then checking this
command will make mIRC reconnect automatically.

Actions are purple
If this is checked, any actions in a channel window appear in purple. Otherwise, all actions
appear in black like normal channel text. I've left this as an option because there are quite
a few colours being used in a channel window already and adding purple might overload
the senses a little bit for some people!

Highlight own messages
If this option is selected, anything you type into a window will be highlighted.

Prefix own messages
If this is selected, your nickname will prefix any messages you type in a
channel/query/chat.

Iconify query window
If someone sends you a query, the default is for the query window to open, ready for input.
You can select this option to force mIRC to iconify the window preventing it from taking the
focus from the window you are currently in.

Dedicated query window
This directs all private messages or notices from other users to one single message
window. You will need to use the /msg command to reply. If you want to open a query
window to a user, use the /query window.

Whois on query
Select this to have mIRC do a /whois nickname on any person that sends you a private
message. The /whois will be done the first time the query window is opened.

Cancel away on keypress
If you set yourself as away (using /away <message>) then selecting this option cancels the
away option automatically if you type a message to a channel or a query/chat window.

Beep on channel message
Whenever a message is sent to a channel window that isn't currently the active window,
mIRC will beep. Note that all this option does is automatically turn on the "Beep" setting in
a channel window's System Menu when it first opens. So changing this setting doesn't
affect windows which are already open.

Beep on query message
Whenever a message is sent to a query window that isn't currently the active window,
mIRC will beep. Note that all this option does is automatically turn on the "Beep" setting in
a query window's System Menu when it first opens. So changing this setting doesn't affect
windows which are already open.

Beep on message while in buffer
Selecting this option will make mIRC beep if someone speaks on a channel while you are
scrolling back through lines in the scrollback buffer.

Auto-join on invite
This will make you automatically join a channel when you are invited to it. mIRC will also try
to minimize the window, however this might not always work.

Rejoin channel when kicked
If you are kicked from a channel, mIRC will immediately try to rejoin the same channel. It
won't close the channel window unless it finds that you can't rejoin the channel.

Show Alternate Join/Part/Quit
Checking this option makes mIRC display the join, part, and quit messages in a different,
more compact format.

Show user addresses
Whenever a user joins/parts/quits/is kicked/etc. from a channel, you can choose to see their
address by selecting this option.

Show quits in channel
Normally if a user on the same channel as you quits IRC, this message is only printed in the
status window. If you want the quit message to be printed in the channel window as well
then select this option.

Show joins/parts in channel
You can turn off this option if you are on channels that are very crowded and your channel
window is filling up with joins and parts. The joins and parts will instead be sent to the
status window.

Show invites in active window
If this setting is turned off then invite messages will appear in the status window.

Show modes in channel
Normally all mode changes are shown in a channel window but you can turn this option off
to dump these to the status window.

Show queries in active window
This shows all queries in the active channel window instead of opening up a query window.
However, if you are not in a channel window, a query window will be opened.

Action Lists

Select one of the following options and enter it's corresponding text in the edit box. You can
also specify whether the option is active by checking the active checkbox.

Perform commands on logon
You can enter a set of commands in this box which will be performed every time you
connect to IRC. To understand how commands work, see the Aliases help section. A quick
example:

/names #mirc,#irchelp | /join #winsock

Highlight lines with these words
On a channel, any lines which contain words matching your list will be highlighted in a dark
brown. This eases locating messages directed at you or about you eg. you could place your
nickname (or variations of it) in this box. Each word MUST be seperated by only a space,
not commas.

Notify presence of these nicks
The client will check to see if the specified nicknames are currently on IRC and will inform
you if they have come on or have left. It will pause 30 seconds inbetween each check. You
can force notify to check by using the /notify command by itself. You may add/remove users
to the notify line at the command line by typing "/notify nick1 nick2 ...". You can turn notify
on and off by typing "/notify on" and "/notify off" respectively. You will also be informed if no
users in your list are on IRC when you first connect.

If you prefix a nickname with a "+" sign then mIRC will do a /whois on the nickname as part
of the notify. However, if you do this on too many nicknames then the IRC server might
disconnect you, so it's best to use it only if you really need to.

Auto-Op these nicks
If you are on a channel and you have channel Op status, any users that match the given
nicknames will be automatically given Op status when they join the channel. Since this isn't
very safe, you can specify a users address instead of their nickname. You can use
wildcards.    You may add/remove users to the auto-op line at the command line by typing
"/auto nick1 nick2 ...". You can turn auto on and off by typing "/auto on" and "/auto off"
respectively.

NOTE: This is affected by the Random delay auto-op option (see below).

Protect these nicks
If a user de-ops a nickname in your protect list, then the user is automatically de-opped. If
a user kicks a nickname in your protect list, then that user is also de-opped and kicked. If
you do not have Op status, no action is taken. You may add/remove users to the protect
line at the command line by typing "/protect nick1 nick2 ...".You can turn protect on and off
by typing "/protect on" and "/protect off" respectively.

Ignore these nicks
Messages from the nicknames/addresses in this list will be ignored. (ie. you will not see
them). You may add/remove users to the ignore line at the command line by typing "/ignore
nick1 nick2". You can turn ignore on and off by typing "/ignore on" and "/ignore off"
respectively.

Show notifies in active window
The default is to show notifies in the status window, however checking this option will also
show notifications in the current active window.

Beep on highlighted word
This works in conjunction with the highlight option. If a matching word appears and this
option is checked then mIRC will beep.

Random delay Auto-op
This option introduces a random 1 to 7 seconds delay in the auto-op routine. This is to
prevent channel windows from filling up with mode notifications whenever a nickname is in
the auto-op list of several users. If at the end of the random delay the user has already
been opped then mIRC does not perform an Op.

Ctcp finger reply
The message a user receives when they /ctcp finger you.

Quit message
The message displayed when you quit IRC.

Event Beeps

On event, beep...
Certain events cause a number of beeps to be made to alert you of their occurence. Since
this might be annoying to some users, it is possible to alter the number of beeps as well as
how quickly they are sounded. The seconds value is in milliseconds. To turn off notification
all together, specify zero beeps.

Beep on...
If you are disconnected by the server without having typed /quit or selected the disconnect
menu item, then mIRC will beep to indicate that you are no longer connected to IRC. You
can also select to be beeped if you receive a Query, Notice, or Invite.

Logging

Automatic Logging
You can have mIRC automatically log the channel and query/dcc chat windows whenever
they open up.

Log and Buffers directory
The directory in which all log files and buffer saves are stored.

Finger Server

If you enable this option mIRC will listen for finger requests on port 79.

You must specify a Finger file, and this must be set up with named sections which will
be used to reply to any finger requests. Each section begins in the following way:

[name]
line1
    .
    .
    .
lineN

The section name corresponds to the userid that is being fingered. eg. if someone fingers
khaled@mardam.demon.co.uk, then I will have a section named [khaled].

There should be at least one section named [default] which will be used to reply to a
finger request which does not specify a user, or specifies a user that doesn't exist.

Therefore, for my own system I would have two sections:

[default]
etc.

[khaled]
etc.

This can, for example, allow you to setup a menu system, with various sections that can
answer user finger queries, the default section being the main menu.

On a related note, check out the /finger command.

Local Information

Local Host
This is used to register with the server and may be the part of your email address after the
@ sign, eg. if my email address is khaled@mardam.demon.co.uk, then I would enter
mardam.demon.co.uk here.

If you leave this box empty then mIRC will try to get your local hostname by itself. However,
if mIRC replies with the message "unable to get local hostname" then you will have to fill in
your local hostname manually. mIRC will then use whatever you have entered to get your IP
address...

IP Address
This will normally be filled in by mIRC and is here mainly for your information. mIRC looks
up your IP address and stores it in the mirc.ini file for future reference. This way it doesn't
have to look it up every time you want to connect.

If mIRC is having trouble getting your IP address then you can enter this value manually
and mIRC will assume that it is correct. If this value is wrong you will still be able to log on
to IRC but you will not be able to initiate DCC Send/Chat sessions (you will only be able to
accept them).

On connect, always get...
These options are here because of the different types of internet connections people have.
Some people have a fixed Local hostname and IP address, other have a dynamic Local
Hostname, others a dynamic IP address, and yet others have both. If you don't know what
kind of connection you have, leave both of these checked.

Selecting "Always get Local Host" automatically turns on the "Always get IP address"
option. De-selecting the "Always get IP address" option automatically turns off the "Always
get Local Host" option.

Basically:

1) If mIRC is having trouble getting your Local Hostname, then turn OFF "Always get local
host", and type in your Local Host manually. The Local host you type in will be used to get
your IP address. If your IP address is dynamic, keep "Always get IP address" turned ON,
otherwise turn it off. If your Local hostname is dynamic, you're in trouble.

2) If mIRC is having trouble getting your IP address, then turn OFF "Always get IP address",
and type in your IP Address manually. The IP address you type in will be used to initiate
DCC Sends/Chats. If your IP Address is dynamic, you're in trouble.

3) If the above fail, turn OFF both Always get Local host and IP address, and type both
these values in manually. If they're the correct values, great. If they're not, you will be able
to use IRC just fine, but you won't be able to initiate DCC Sends/Chats.

Confused? So am I! Please don't email me about this... I've said everything I know in the
above paragraphs!

Servers

A server listens for and replies to specific types of requests from other users or systems.

Ident Server
Finger Server

Long File Names With.Spaces In Them

The DCC protocol doesn't take into account the possibility of a filename containing spaces,
so most if not all IRC clients will incorrectly interpret the following DCC Send message:

PRIVMSG nick :DCC SEND This is a long file name with.spaces in it ipaddress port filesize

Thus mIRC gives you the Fill Spaces option; this fills spaces in a filename with the
underscore character "_", which should then allow other clients to interpret the message
correctly. So other clients would see:

PRIVMSG nick :DCC SEND This_is_a_long_file_name_with.spaces_in_it ipaddress port filesize

If the Fill Spaces option isn't selected then mIRC sends "Long File Names with.Spaces in
them" enclosed in quotes. For example:

PRIVMSG nick :DCC SEND "This is a long file name with.spaces in it" ipaddress port filesize

As far as I know, only mIRC can send and receive messages of this form (and only versions
3.8 and onwards), so if you try using this dcc send message with other clients it probably
won't work.

Exit

Saves settings and window positions, closes dcc sessions, quits from the server, and exits
mIRC.

Mooo! ;)

